chemical and biological aspects of 1 render it an intriguing and challenging target. Indeed, a number of synthetic approaches have been described to date.[4-6] The only total synthesis of 1 was reported by Kishi in 1998, [7] an achievement further highlighted by the determination of the absolute configuration of 1 and the development of a biomimetic intramolecular Diels-Alder reaction to construct the G ring along with the macrocycle. Herein, we describe our own efforts in this area which have culminated in a formal total synthesis of natural (+)-pinnatoxin A.

Our synthetic strategy toward (+)-1 targeted an optimally convergent route in which two complex fragments (2 and 3) were to be constructed, coupled, and elaborated to form the macrocyclic system (Scheme 1). We envisaged assembling 2

Natural Products Synthesis

A Formal Total Synthesis of (+)-Pinnatoxin A**

Satoshi Sakamoto, Hayato Sakazaki, Koji Hagiwara, Kei Kamada, Kento Ishii, Takeshi Noda, Masayuki Inoue,* and Masahiro Hirama*

In 1995, Uemura and co-workers reported the isolation and characterization of pinnatoxin A (1, Scheme 1), [1,2] one of the major toxic principles responsible for outbreaks of Pinna shellfish poisonings in China and Japan. The precise biological activity has not been clarified, but 1 has been suggested to be a Ca²⁺-channel activator.^[3] Structurally, 1 features a spirolinked cyclic imine along with trioxadispiro- and bicycloacetal substructures within a 27-membered macrocycle. The novel

[*] Dr. S. Sakamoto, H. Sakazaki, K. Hagiwara, K. Kamada, K. Ishii, Prof. Dr. M. Inoue, Prof. Dr. M. Hirama Department of Chemistry

Graduate School of Science, Tohoku University

Sendai 980-8578 (Japan) Fax: (+81) 22-217-6566

E-mail: inoue@ykbsc.chem.tohoku.ac.jp hirama@ykbsc.chem.tohoku.ac.jp

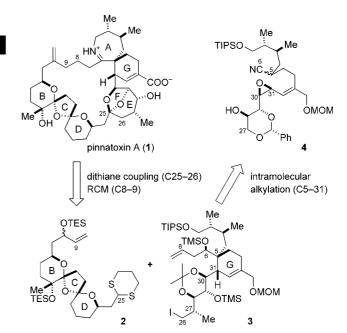
Prof. Dr. T. Noda

Department of Applied Chemistry

Faculty of Engineering, Kanagawa Institute of Technology

Atsugi 243-0292, (Japan)

Prof. Dr. M. Inoue


Research and Analytical Center for Giant Molecules Graduate School of Science, Tohoku University

Sendai 980-8578 (Japan)

[**] This work was supported by CREST, Japan Science and Technology Agency (JST). A fellowship to H.S. from the Japan Society for the Promotion of Science (JSPS) is gratefully acknowledged. We thank Professor Y. Kishi (Harvard University) for providing NMR spectra of synthetic intermediates, Professor D. Uemura (Nagoya University) for providing natural pinnatoxin A, and Professor K. Nagasawa (Tokyo University of Agriculture and Technology) for helpful

Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.

Scheme 1. Retrosynthesis of pinnatoxin A. MOM = methoxymethyl; TES = triethylsilyl; TIPS = triisopropylsilyl; TMS = trimethylsilyl.

and 3 through a dithiane coupling reaction at C25; the polyether macrocycle would then emerge from ring-closing olefin metathesis reaction (RCM)[8] to link C8 and C9, and subsequent EF-ring formation. Ring G was to be constructed by using intramolecular cyclization of epoxy nitrile 4, [9] which would set the stereochemistry of the C5 quaternary center, as demonstrated in our model studies on simple substrates. [4c,d]

The synthesis of the BCD bisspiroacetal 2 began with previously reported compound 5^[4a] (Scheme 2). Sharpless asymmetric epoxidation^[10] of allylic alcohol 5 with (+)-diethyl tartrate provided 6. Oxidation of alcohol 6 to aldehyde 7 with SO₃·py/DMSO followed by treatment with vinylmagnesium bromide produced epoxy alcohol 8 as a 1:1 diastereomeric mixture. Subsequent reductive opening of epoxide 8 with Red-Al in Et₂O resulted in the formation of 1,3-diol 9 as the major isomer. [11] After protection of 9 as its acetonide, chemoand enantioselective dihydroxylation of the C15-C16 olefin was realized under Sharpless conditions in the presence of (DHQD)₂PHAL,^[12] which exclusively produced the desired

Zuschriften

Scheme 2. Reagents and conditions: a) tBuOOH, Ti(OiPr)4 (0.2 equiv), (+)-DET (0.2 equiv), molecular sieves (4 Å), CH₂Cl₂, -20°C, 83%; b) SO₃·py, Et₃N, DMSO, CH₂Cl₂, room temperature; c) CH₂=CHMgBr, THF, -40°C, 74% (over two steps); d) NaAlH₂(OCH₂CH₂OCH₃)₂, Et_2O , $-20\rightarrow 0$ °C; then NaIO₄, THF/H₂O (1:1), room temperature, 90%; e) 2-methoxypropene, p-TsOH, DMF, room temperature, 91%; f) OsO_4 (1 mol%), $(DHQD)_2PHAL$ (1.5 mol%), $K_3[Fe(CN)_6]$ (3 equiv), K_2CO_3 (3.5 equiv), $MeSO_2NH_2$ (1 equiv), $tBuOH/H_2O$ (1:1), 0°C; g) SO₃·py, Et₃N, DMSO, room temperature, 82% (over two steps); h) CSA (0.1 equiv), MeOH, room temperature, 3 h; then CSA, toluene, room temperature, 2 days, 84% (12), 11% (C19-epimer); i) PivCl, CH_2Cl_2 /pyridine (2:1), 0°C \rightarrow RT; j) TESOTf, 2,6-lutidine, CH_2Cl_2 , 0°C; k) DIBAL-H, THF, -78°C, 75% (over three steps); l) I₂, Ph₃P, imidazole, THF, room temperature, 91%; m) 1,3-dithiane, nBuLi, THF/ HMPA (4:1), -78 °C, 83 %. DET = diethyl tartrate; DMSO = dimethyl sulfoxide; Ts = p-toluenesulfonyl; DMF = N, N-dimethylformamide; (DHQD)₂PHAL = hydroquinidine 1,4-phthalazinediyl diether; CSA = (+)-camphorsulfonic acid; Piv = pivaloyl; Tf = trifluoromethanesulfonyl; DIBAL-H = diisobutylaluminum hydride; HMPA = hexamethylphosphoramide.

1,2-diol 10 without oxidizing the terminal olefin. Then, oxidation with SO_3 -py converted secondary alcohol 10 into ketone 11.

The crucial bisspiroacetalization of 11 necessitated finetuning of the reaction conditions.^[13] First, 11 was exposed to camphorsulfonic acid in methanol at room temperature to remove the acetonide, and then methanol was replaced with toluene to increase the ratio of the desired isomer 12. In this way, 12 was selectively generated out of four possible isomers in 84% yield. As depicted in Figure 1, favorable intramolecular hydrogen bonding between free hydroxy groups at C10

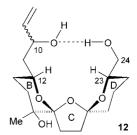


Figure 1. Potential intramolecular hydrogen bond in 12.

and C24 is considered to influence the high selectivity for 12. [14] Next, the 10-OH and 15-OH groups of 12 were protected as their TES ethers through a three-step sequence to afford 13, whose 24-OH function was converted into iodide to give 14. Finally, nucleophilic attack of lithiodithiane at 14 delivered the BCD-ring fragment 2, suitably functionalized for assembly of the fragments. The configurations of the C16 and C19 stereocenters established during the spiroacetalization were unambiguously determined by NOE experiments at this stage.

Synthesis of the other half of the molecule began with 4,6-O-benzylidene-D-glucose (15)^[15] (Scheme 3). Wittig reaction of 15 with ylide $16^{[16]}$ in refluxing THF afforded olefin (E)-17. The hydroxy groups at C28 and C31 of 17 were selectively protected as TES ethers, and PMBM[17] was introduced to protect the remaining 30-OH to produce 18. Reduction with DIBAL-H and subsequent protection with MOMCl converted ester 18 into MOM ether 19. Then, chemoselective hydroboration^[18] of the terminal olefin of diene 19 generated alcohol 20, which was oxidized to aldehyde 21 with SO₃·py. Addition of Grignard reagent 22^[4d] to 21 extended the carbon chain corresponding to the A-ring to furnish 23. The secondary alcohol of 23 was derivatized to mesylate 24, after which the mesylate was replaced by a nitrile group through the action of Et₄NCN to provide 25 after reattachment of the partially cleaved TES groups (1:1 diastereomeric mixture at C5). Replacement of the PMBM group of 25 with the Ms group in two steps and subsequent selective removal of TES from 26 with HF-py resulted in diol 27.

Stereoselective G-ring formation from **27** was induced by an excess of KN(TMS)₂. [4c,d] After treating mesylate **27** with KN(TMS)₂ (2.5 equiv) in THF to promote the C30–C31 epoxide formation, [19] additional KN(TMS)₂ (1.5 equiv) was introduced to the reaction mixture, giving rise to the desired product **29** as the sole isomer in 72 % yield. [20] Not only is the stereoselectivity quite remarkable, but the reactions efficiently install consecutive C5 quaternary and C31 tertiary centers. The selectivity is consistent with cyclization through transition state **28** in which the large branched carbon chain preferentially adopts the equatorial orientation.

Having constructed the G-ring, we turned our attention to stereoselective introduction of the C36-methyl group and

Scheme 3. Reagents and conditions: a) 16 (2 equiv), THF, reflux; b) TESCl, Et₃N, THF, 40° C; c) PMBMCl, iPr_2 NEt, nBu_4 NBr, CH₂Cl₂, reflux, 51° K (over three steps); d) DIBAL-H, THF, -78° C, 89° K; e) MOMCl, iPr_2 NEt, nBu_4 NBr, (CH₂Cl)₂, room temperature, 95° K; f) 9-BBN, THF, room temperature; then aqueous H₂O₂, aqueous NaOH, 0° C \rightarrow RT, 90° K; g) SO₃·py, Et₃N, DMSO, CH₂Cl₂, room temperature, 84° K; h) 22 (2.5 equiv), THF, 0° C, 85° K; i) MsCl, Et₃N, CH₂Cl₂, 0° C; j) Et₄NCN, MeCN, 70° C; k) TESCl, imidazole, DMF, room temperature, 67° K (over three steps); l) DDQ, CH₂Cl₂/pH 7 buffer (20:1), 85° K; m) MsCl, DMAP, pyridine, 40° C; n) HF·py, 0° C, 99° K (over two steps); o) KN(TMS)₂ (2.5 equiv), THF, 0° C; then KN(TMS)₂ (1.5 equiv), 0° C \rightarrow RT, 72° K. PMBM = p-methoxybenzyloxymethyl; 9-BBN = 9-borabicyclo[3.3.1]nonane; Ms = methanesulfonyl; DDQ = 2,3-dichloro-5,6-dicyano-1,4-benzoquinone; DMAP = 4-(dimethylamino)pyridine.

elongation of the carbon chain at C6 (Scheme 4). First, 1,3-diol **29** was converted into acetonide **30**, of which stepwise reduction to the alcohol and subsequent protection with TBS afforded **31**. Then, deprotection of the benzylidene acetal of **31** under Birch conditions produced diol **32**, and the secondary alcohol at C29 was quantitatively protected as its TES ether to give **33** in a three-step sequence. Oxidation of the remained primary alcohol of **33** with SO₃·py followed by addition of MeMgBr led to secondary alcohol **34**, which was further oxidized to ketone **35**. Treatment of **35** with the Tebbe reagent^[21] resulted in exo olefin **36**. Regio- and stereoselective hydroboration of diene **36** was realized with 9-BBN to generate **37** with the desired C36-methyl stereochemis-

Scheme 4. Reagents and conditions: a) 2,2-dimethoxypropane, CSA, CH_2Cl_2 , room temperature, 88%; b) DIBAL-H, toluene, -30 °C \rightarrow RT; then SiO2, hexane, room temperature, 99%; c) DIBAL-H, toluene, -78 °C to 0 °C; d) TBSOTf, 2,6-lutidine, CH₂Cl₂, 0 °C, 100% (2 steps); e) Na, liq NH₃, THF, -78 °C, 91 %; f) PivCl, pyridine, room temperature; g) TESCl, imidazole, DMF, room temperature; h) DIBAL-H, toluene, -78 °C, 100% (over three steps); i) SO₃-pyridine, DMSO, Et₃N, CH₂Cl₂, room temperature; j) MeMgBr, THF, 0°C; k) Dess-Martin periodinane, CH₂Cl₂/pyridine (5:1), room temperature, 87% (over three steps); l) Tebbe reagent, THF, room temperature, 95%; m) 9-BBN, THF, room temperature; then aqueous H2O2, aqueous NaOH, 0°C→RT, 78%; n) PivCl, DMAP, pyridine, room temperature; o) TBAF, THF, room temperature, 100% (over two steps); p) PDC, CH₂Cl₂, room temperature, 84%; q) TMSCl, imidazole, DMF, room temperature, 94%; r) CH2=CHCH2MgBr, THF, 0°C; s) PivCl, DMAP, pyridine, room temperature; t) TMSCl, imidazole, DMF, room temperature; u) DIBAL-H, toluene, $-78\,^{\circ}\text{C}$, $67\,\%$ (42, over four steps), $17\,\%$ (C6epimer, over four steps); v) I₂, Ph₃P, imidazole, THF, room temperature, 88%. TBS = tert-butyldimethylsilyl; TBAF = tetrabutylammonium fluoride; PDC = pyridinium dichromate.

Zuschriften

try.^[22] Primary alcohol **37** was in turn transformed into pivaloyl ester **38**, from which the silyl protecting groups (except TIPS) were removed with TBAF to afford **39**. After selective oxidation of diol **39** with PDC to form aldehyde **40**, the 29-OH group was converted into the TMS ether to afford **41**. Addition of allylmagnesium bromide to the C6 aldehyde of **41** and a subsequent reprotection–deprotection sequence gave **42**. Lastly, introduction of iodine at C26 of alcohol **42** furnished **3**, appropriately functionalized for the next coupling reaction.

The stage was now set for union of the two highly complex structural fragments **2** and **3** and subsequent macrocyclization by RCM (Scheme 5). Lithiation of dithiane **2** with *t*BuLi in THF/HMPA at $-78\,^{\circ}$ C was immediately followed by addition of a precooled solution of iodide **3**, [23] delivering the coupling adduct **43** in 95% yield based on recovered **3**. After many unsuccessful attempts to effect the macrocyclization of **44**, it was found that the silyl protecting groups proximal to the terminal olefins impeded the RCM reaction, presumably owing to steric shielding of the reaction sites. Therefore, the TES (10-OH) and two TMS groups (6-, 29-OH) were selectively removed with TBAF at 0 °C to produce triol **44**. Gratifyingly, macro-RCM reaction of **44** was enabled by the action of Grubbs catalyst **45**, [24] resulting in the formation of 27-membered carbocycle **46** with the *E* olefin (75% yield).

Prior to construction of the EF-ring system within the obtained macrocycle, dithiane 46 was transformed into

dimethyl acetal **47** with the Stork reagent ((CF₃CO₂)₂IPh, MeOH). [25] Then, **47** was sequentially subjected to TFA/MeOH and CSA/MeOH, [26] which led to deprotection of the acetonide and silyl protecting groups, and concomitant cyclization of the desired EF-ring of **48** in 71% yield over the sequence. Notably, the preexisting trioxadispiroacetal moiety was left intact under these acidic conditions.

With the synthesis of the entire macrocyclic structure of 1 completed, the end game for the total synthesis entailed specific functional-group manipulations of the highly complicated molecule. The C10 allylic alcohol of pentaol 48 was oxidized with DDQ to afford α,β -unsaturated ketone **49**, [27] which was converted into ketone 50 by 1,4-reduction of the C8–C9 double bond with the Stryker reagent. [28] The exo methylene group was then introduced at C10 of 50 by Wittig reaction to provide 51. The Ts and TES groups were sequentially introduced to 1-OH and 28-OH of 51, respectively, and the 6-OH group was oxidized with Dess-Martin periodinane^[29] to give ketone **52**. Displacement of tosylate of 52 with azide generated 53, which was treated with acid to remove the MOM and TES groups, affording triol 54. Allylic alcohol 54 was then oxidized to carboxylic acid 55 in a twostep sequence (MnO₂^[30] then NaClO₂).

To obtain pinnatoxin A (1) directly from 55, intramolecular aza-Wittig reaction of azide 55 was attempted in the presence of PMe₃. [4d] However, 1 was not detected in the reaction products, and the amine was only obtained through

Scheme 5. Reagents and conditions: a) tBuLi (1.9 equiv), 2 (1.7 equiv), THF/HMPA (9:1), -78 °C, 95% based on recovered 3 (41%); b) TBAF, THF, 0 °C, 89%; c) 45 (0.1 equiv), CH₂Cl₂, reflux, 75%; d) (CF₃CO₂)₂IPh, molecular sieves (3 Å), MeOH/CH₂Cl₂ (20:9), room temperature; e) TFA/MeOH (1:20), room temperature; then CSA, MeOH, room temperature, 71% (over two steps); f) DDQ, 1,4-dioxane/CH₂Cl₂ (1:1), 40 °C, 67%; g) [{(Ph₃P)CuH}₆] (0.1 equiv), toluene/H₂O (100:1), room temperature, 64%; h) Ph₃PCH₃Br, tBuOK, THF, 0 °C, 64%; i) p-TsCl, Et₃N, DMAP, molecular sieves (4 Å), CH₂Cl₂, room temperature; j) TESCl, imidazole, CH₂Cl₂, room temperature, 51% (over two steps); k) Dess–Martin periodinane, CH₂Cl₂; l) NaN₃, DMF, 80 °C, 68% (over two steps); m) aqueous HCl (2 N)/THF (1:10), 40 °C, 96%; n) MnO₂, CH₂Cl₂, room temperature; o) NaClO₂, NaH₂PO₄, 2-methyl-2-butene, tBuOH/H₂O (4:1), 0 °C; p) PMe₃, THF, 60 °C, 0% (1); q) 56, toluene, 70 °C, 34% (over three steps); r) PMe₃, THF/H₂O (10:1), room temperature, 60%.

hydrolysis of the resultant N=P bond. Therefore, we elected to complete the formal total synthesis of **1** simply by reduction of the C1 azide and esterification of the C34 carboxylic acid. Introduction of *t*Bu to **55** with **56**^[31] and subsequent treatment with PMe₃ in THF/H₂O^[32] gave rise to amine **57**, which had been transformed into **1** by Kishi in two steps. ^[33] Our synthetic **57** showed ¹H NMR data that was identical to that provided by Professor Kishi.

In summary, we have reported the formal total synthesis of (+)-pinnatoxin A in a highly convergent fashion. The salient methodologies employed in our successful campaign include 1) stereoselective bis-acetalization to yield the BCD-ring fragment 2 effected by exploiting intramolecular hydrogen bonding; 2) intramolecular alkylation of epoxynitrile 4 to construct the G-ring; 3) powerful dithiane coupling to unify the two halves of the molecule (2 and 3); 4) macrocyclization of 27-membered carbocycle 46 by utilizing olefin metathesis reaction; and 5) intramolecular acetalization of the complex macrocycle to construct EF-ring 49.

Received: August 27, 2004

Keywords: heterocycles · macrocycles · natural products · spiro compounds · total synthesis

- a) D. Uemura, T. Chou, T. Haino, A. Nagatsu, S. Fukuzawa, S. Zheng, H. Chen, J. Am. Chem. Soc. 1995, 117, 1155-1156; b) T. Chou, O. Kamo, D. Uemura, Tetrahedron Lett. 1996, 37, 4023-4026.
- [2] For the structural determination of related molecules, see: pinnatoxin B,C: a) N. Takada, N. Umemura, K. Suenaga, T. Chou, A. Nagatsu, T. Haino, K. Yamada, D. Uemura, *Tetrahedron Lett.* 2001, 42, 3491–3494; pinnatoxin D: b) T. Chou, T. Haino, M. Kuramoto, D. Uemura, *Tetrahedron Lett.* 1996, 37, 4027–4030; spirolides: c) T. Hu, J. M. Curtis, Y. Oshima, M. A. Quilliam, J. A. Walter, W. M. Watson-Wright, J. L. C. Wright, J. Chem. Soc. Chem. Commun. 1995, 2159–2161; d) M. Falk, I. W. Burton, T. Hu, J. A. Walter, J. L. C. Wright, *Tetrahedron* 2001, 57, 8659–8665; pteriatoxins: e) N. Takada, N. Umemura, K. Suenaga, D. Uemura, *Tetrahedron Lett.* 2001, 42, 3495–3497.
- [3] S. Z. Zheng, F. L. Huang, S. C. Chen, X. F. Tan, J. B. Zuo, J. Peng, R. W. Xie, *Chin. J. Mar. Drugs* 1990, 33, 33–35.
- [4] For synthetic studies of 1 from this laboratory, see: a) T. Noda, A. Ishiwata, S. Uemura, S. Sakamoto, M. Hirama, Synlett 1998, 298–300; b) A. Ishiwata, S. Sakamoto, T. Noda, M. Hirama, Synlett 1999, 692–694; c) A. Nitta, A. Ishiwata, T. Noda, M. Hirama, Synlett 1999, 695–696; d) J. Wang, S. Sakamoto, K. Kamada, A. Nitta, T. Noda, H. Oguri, M. Hirama, Synlett 2003, 891–893.
- [5] For synthetic studies of 1 from other laboratories, see: a) T. Sugimoto, J. Ishihara, A. Murai, Tetrahedron Lett. 1997, 38, 7379-7382; b) J. Ishihara, T. Sugimoto, A. Murai, Synlett 1998, 603-606; c) B. D. Suthers, M. F. Jacobs, W. Kitching, Tetrahedron Lett. 1998, 39, 2621-2624; d) T. Sugimoto, J. Ishihara, A. Murai, Synlett 1999, 541-544; e) J. Ishihara, S. Tojo, A. Kamikawa, A. Murai, Chem. Commun. 2001, 1392-1393; f) S. Nakamura, J. Inagaki, T. Sugimoto, M. Kudo, M. Nakajima, S. Hashimoto, Org. Lett. 2001, 3, 4075-4078; g) S. Nakamura, J. Inagaki, M. Kudo, T. Sugimoto, K. Obara, M. Nakajima, S. Hashimoto, Tetrahedron 2002, 58, 10353-10374; h) S. Nakamura, J. Inagaki, T. Sugimoto, Y. Ura, S. Hashimoto, Tetrahedron 2002, 58, 10375-10386.

- [6] For synthetic studies of spirolides, see: a) D. P. Furkert, M. A. Brimble, Org. Lett. 2002, 4, 3655-3658; b) M. Trzoss, M. A. Brimble, Synlett 2003, 2042-2046, and references therein.
- [7] a) J. A. McCauley, K. Nagasawa, P. A. Lander, S. G. Mischke, M. A. Semones, Y. Kishi, J. Am. Chem. Soc. 1998, 120, 7647 – 7648; b) K. Nagasawa, J. Synth. Org. Chem. Jpn. 2000, 58, 877 – 886.
- [8] For reviews, see: a) A. Fürstner, Angew. Chem. 2000, 112, 3140–3172; Angew. Chem. Int. Ed. 2000, 39, 3013–3043; b) T. M. Trnka, R. H. Grubbs, Acc. Chem. Res. 2001, 34, 18–29; c) Handbook of Metathesis, Vol. 2 (Ed.: R. H. Grubbs), Wiley-VCH, Weinheim, 2003.
- [9] a) G. Stork, L. D. Cama, D. R. Coulson, J. Am. Chem. Soc. 1974, 96, 5268-5270; b) G. Stork, J. F. Cohen, J. Am. Chem. Soc. 1974, 96, 5270-5272; for a review, see: c) F. F. Fleming, B. C. Shook, Tetrahedron 2002, 58, 1-23.
- [10] a) Y. Gao, R. M. Hanson, J. M. Klunder, S. Y. Ko, H. Masamune, K. B. Sharpless, J. Am. Chem. Soc. 1987, 109, 5765-5780; b) T. Katsuki, V. S. Martin, Org. React. 1996, 48, 1-299.
- [11] J. M. Finan, Y. Kishi, Tetrahedron Lett. 1982, 23, 2719-2722.
- [12] a) G. A. Crispino, K. S. Jeong, H. C. Kolb, Z. M. Wang, D. Xu, K. B. Sharpless, *J. Org. Chem.* 1993, 58, 3785-3786; b) P. G. Andersson, K. B. Sharpless, *J. Am. Chem. Soc.* 1993, 115, 7047-7048; for a review, see: b) H. C. Kolb, M. S. VanNieuwenhze, K. B. Sharpless, *Chem. Rev.* 1994, 94, 2483-2547.
- [13] For a recent review on synthesis of bis-spiroacetals, see: M. A. Brimble, F. F. Farès, *Tetrahedron* **1999**, *55*, 7661–7706.
- [14] Existence of this intramolecular hydrogen bond was suggested from the X-ray analysis of a closely related substrate with free hydroxy groups at C10 and C24.^[4a] Furthermore, acidic treatment of a 10-OH-protected substrate resulted in nonselective formation of the desired spiroacetal and its C19-epimer despite the seemingly favorable anomeric effect at C19 of the desired compound.
- [15] P. L. Barili, G. Berti, G. Catelani, C. Cini, F. D'Andrea, E. Mastrorilli, Carbohydr. Res. 1995, 278, 43-57.
- [16] a) H. J. Bestmann, Angew. Chem. 1965, 77, 651-666; Angew. Chem. Int. Ed. Engl. 1965, 4, 645-660; b) R. S. Mali, S. G. Tilve, S. N. Yeola, A. R. Manekar, Heterocycles 1987, 26, 121-127.
- [17] A. P. Kozikowski, J.-P. Wu, Tetrahedron Lett. 1987, 28, 5125–5128.
- [18] H. C. Brown, R. Liotta, C. G. Scouten, J. Am. Chem. Soc. 1976, 98, 5297 – 5301.
- [19] The intermediacy of epoxide **4** was supported by its isolation without the subsequent addition of KN(TMS)₂.
- [20] The stereochemistry of C5 and C31 were determined by X-ray crystallographic analysis of an analogue derivatized from 29; see Supporting Information for detail.
- [21] F. N. Tebbe, G. W. Parshall, G. S. Reddy, J. Am. Chem. Soc. 1978, 100, 3611 – 3613.
- [22] W. C. Still, J. C. Barrish, J. Am. Chem. Soc. 1983, 105, 2487 –
- [23] a) D. R. Williams, S.-Y. Sit, J. Am. Chem. Soc. 1984, 106, 2949–2954; b) A. B. Smith III, S. M. Condon, J. A. McCauley, J. L. Leazer, Jr., J. W. Leahy, R. E. Maleczka, Jr., J. Am. Chem. Soc. 1997, 119, 947–961; c) A. B. Smith III, S. M. Condon, J. A. McCauley, Acc. Chem. Res. 1998, 31, 35–46.
- [24] M. Scholl, S. Ding, C. W. Lee, R. H. Grubbs, Org. Lett. 1999, 1, 953–956.
- [25] G. Stork, K. Zhao, Tetrahedron Lett. 1989, 30, 287-290.
- [26] While initial treatment with TFA mainly removed the TMS and TES groups, the TIPS and acetonide groups were deprotected by subjection to CSA/MeOH. This stepwise deprotection scheme appears to be superior to a single-step approach in terms of yield.
- [27] a) H.-D. Becker, A. Björk, E. Adler, J. Org. Chem. 1980, 45, 1596–1600; b) E. J. Corey, C. Shih, N.-Y. Shih, K. Shimoji, Tetrahedron Lett. 1984, 25, 5013–5016.

Zuschriften

- [28] W. S. Mahoney, D. M. Brestensky, J. M. Stryker, J. Am. Chem. Soc. 1988, 110, 291 – 293.
- [29] D. B. Dess, J. C. Martin, J. Am. Chem. Soc. 1991, 113, 7277 7287.
- [30] T. Aoyama, N. Sonoda, M. Yamauchi, K. Toriyama, M. Anzai, A. Ando, T. Shioiri, Synlett 1998, 35–36.
- [31] L. J. Mathias, Synthesis 1979, 561 576.
- [32] For related examples, see: a) B. M. Trost, S. R. Pulley, *Tetrahedron Lett.* 1995, 36, 8737–8740; b) J. Zhu, D. Ma, *Angew. Chem.* 2003, 115, 5506–5509; *Angew. Chem. Int. Ed.* 2003, 42, 5348–5351
- [33] Kishi reported that heating **57** at 200°C under vacuum and treating the resultant imine with TFA afforded pinnatoxin A (1).^[7]